Laboratory Support for Influenza Vaccine Development – Potency Reagents

HHS International Vaccine Infrastructure Workshop January 12, 2010

Jerry P. Weir, Ph.D.

Director

Division of Viral Products/OVRR/CBER/FDA

Current Influenza Vaccines in the U.S.

- Majority of current influenza vaccines (seasonal and pandemic) are inactivated/split vaccines manufactured in embryonated eggs
 - Fluzone (Sanofi-Pasteur)
 - Fluvirin (Novartis)
 - Fluarix (GSK)
 - FluLaval (ID Biomedical [GSK])
 - Afluria (CSL)
 - Agriflu (Novartis)
- 1 manufacturer of live attenuated influenza vaccine
 - FluMist (MedImmune)

Influenza Vaccine Potency

- Potency of live attenuated influenza vaccines determined by measuring virus titer (focus-forming assay)
 - No standard involved
- Potency of inactivated influenza vaccines determined by single radial immunodiffusion assay (SRID)
 - Assay dependent on availability of standards to measure antigen content (HA) in vaccines
 - Standards specific for each virus strain
 - Standards preparation & calibration is a routine aspect of influenza vaccine manufacture and production
 - Current process of standards preparation & calibration takes weeks/months
 - Standards necessary to ensure that multiple inactivated vaccine products produce the same clinical benefit

SRID Potency Assay

- Assay based on diffusion of virus antigen (e.g., detergent-disrupted virus or vaccine) through agarose gel containing HA-specific antibody
- Diameter of the precipitin ring proportional to the antigen concentration
- Standard curve used to quantify HA in vaccine samples

SRID Potency Assay

- Assay strengths:
 - Not technically demanding
 - Inter-laboratory reproducibility
 - Measures an antigenic form of HA
 - Measured HA content correlates with clinical benefit
- Assay weaknesses:
 - Reagent standardization is critical and time-consuming
 - Dependent upon strain-specific reagents
 - Limited sensitivity (i.e., range)
 - Large quantities of reagents needed to support world-wide vaccine manufacture

Preparation and Calibration of Potency Reagents

- A specific antigen standard and antibody standard is required for each vaccine virus strain
 - Lyophilized and supplied together
 - Reference antigen has an HA value assigned
 - Working dilution provided for reference antibody
- Antigen standard is whole-inactivated virus
 - Primary standard prepared for calibration process
 - Secondary (lyophilized) standard supplied for potency determination
- Antibody standard is hyper-immune sheep serum
- Preparation of antigen and antibody standards proceeds in parallel
 - Distributed by WHO Essential Regulatory Laboratories (CBER/FDA; NIBSC; NIID; TGA)

Calibration of Antigen Reagents

- The HA content of a primary standard (inactivated virus liquid) is determined by physical-chemical methods
 - Total protein nitrogen analysis or Lowry
 - % HA SDS/PAGE & densitometry
 - HA value assigned from independent analyses of the WHO ERLs
- Reference antigen prepared at industrial scale, aliquoted and lyophilized
- HA content of the reference antigen assigned by SRID using primary standard and strain-specific antibody
 - Independent analysis by WHO ERLs
- Reagents distributed as soon as available
- Entire process takes several weeks

HA quantification of primary standard by protein determination & gels/densitometry -DPQ/CBER

Preparation of Strain-Specific Antibody Reagents

- Virus is digested with bromelain to remove HA from virus particles
- HA, missing transmembrane portion, is purified
- Animals immunized multiple times to generate hyper-immune antiserum
- Antiserum tested for suitability in SRID
- Reference antiserum aliquoted and lyophilized
- Distributed along with reference antigen

Current and Future Challenges

- Improving the current process of reagent preparation and calibration
 - Expediting calibration process
 - Developing back-up procedures to ensure reagent availability
- Developing new methods for potency determination
 - Increasing sensitivity
 - Methods that are not antibody dependent
- Developing new technologies to determine potency of newgeneration vaccines
 - Cell culture derived vaccines
 - Adjuvanted vaccines
 - DNA vaccines
 - Recombinant protein based vaccines including virus-like particles

Improving the Current Reagent Calibration Process

- Recently reported MS technique (CDC) uses isotope dilution approach to quantify HA in complex mixtures (Williams et al, CDC)
- Multi-Center collaboration (FDA/CDC) set-up to evaluate use of MS to determine absolute quantity of HA in primary influenza standard
- If correlated with current methods, time necessary for calibration could be reduced from weeks to days

HA quantification by MS analysis

Developing Alternatives for Reagent Production

- Current techniques require availability and preparation of virus, and HA purification before immunization to generate strain-specific antibody not always successful (e.g., H5N1, pandemic H1N1)
- Using recombinant techniques, potency antibody can be generated in absence of virus and not dependent upon HA purification

HA content (μg/ml) in vaccine lots determined by SRID using traditional and alternative potency antibody							
		HA (μg/ml)					
	Potency Antibody ¹	A/Vietnam (traditional)	A/Vietnam (alternative)	A/Indonesia (traditional)	A/Indonesia (alternative)	A/California (traditional)	A/California (alternative)
Vaccine							
A/Vietnam/ Lot 1 ³ Lot 2	1203/2004 (H5N1)	116±11 116±20	100±11 112±30	ND ² 124±21	ND 164±4	ND ND	ND ND
A/Indonesia Lot 1 Lot 2	/5/2005 (H5N1)	ND 664±86	ND 716±68	185±18 664±87	303±24 646±50	ND ND	ND ND
A/California Lot 1 Lot 2 Lot 3	a/7/2009 (H1N1)	ND ND ND	ND ND ND	ND ND ND	ND ND ND	79±9 925±137 70±8	72±2 1017±34 70±9

New Methods for Potency Determination

- Various techniques being explored as alternatives to SRID potency assay including:
 - ELISA
 - Mass spectrometry
 - HPLC
- Used in 2009 pandemic for formulation of clinical trial material (HPLC)
 - Not yet shown to measure an antigenic form of HA that can be correlated with clinical benefit
 - Standards may still be needed but not antibody for some methods

Summary

- Influenza vaccines present unique considerations for product development including the need to standardize vaccines from multiple manufacturers
- Potency reagent development and calibration is time consuming and always a potential bottleneck in production of inactivated influenza vaccines
- Improvements are needed in the current process to ensure timely availability of sufficient reagents
- Development of new techniques and methods for potency evaluation and standards preparation are needed for newgeneration influenza vaccines, including some on the short-term horizon